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RAISING THE THERMAL RESISTANCE OF MULTIPLE-CONTACT
PLATE STACKS

T. A. Kurskaya, E, P. Levchenko, UDC 536,023
R. 8. Mikhal'chenko, A, M. Rybalko,
and B. Ya. Sukharevskii

Multiple-contact stacks of plates either sprayed with manganese dioxide or perforated have better
thermal characteristics than stacks of solid "pure" plates. Under vibrating loads, however, the insulating
characteristics of the former and the mechanical strength of the latter are degraded. Furthermore, the
manufacturing cost of either type of stack is quite high [1].

The mechanical strength of laminated metal stacks can be retained and their thermal resistance can
be increased at the same time, according to studies performed with the aid of a test apparatus shown in
{21, if the surfaces of the laminations are made rougher by knurling or by shot blasting, The smaller num-
ber of contact points between contiguous surfaces and the thus greater number of areas of high thermal
resistance results in a higher thermal contact resistance, while the increase of the dislocation density in
the crystal lattices of the material through cold working — in the case of knurled or shot blasted plates —
results in greater strength of the surface layers [3]. Both factors reduce the overall area of thermal con-
tact, Finally, the higher thermal resistance of such stacks can also be attributed to the lower thermal
conductivity of the material as a result of more intense electron and phonon scattering at pit defects pro-
duced by cold working [4].

The thermal resistance of Kh18N10T-M stainless-~steel plate stacks, 0.10, 0.50 mm thick, after sur-
face knurling and shot blasting, is calculated by the method which has been proposed in [5]. In the case of
an elliptical shape with two contact spots and with an elongation ratio »# = be/ he <1 (bg and hg denote the
minor and the major semiaxes of the ellipse, respectively), under assumptions similar to those in [6], the
following expression is obtained for calculating the thermal resistance:
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A comparison between calculated and experimental values of the thermal resistance for such stacks
indicates close agreement.

NOTATION

A= oA /(A + Ay is the reduced thermal conductivity of the material of the plates, taking into account
the boundary temperatures Ty and Ty;
kg = Vb% — h%;

shng = he/ Vb — bE;
% is a parameter deriving from the boundary condition for the Laplace equation in

curvilinear coordinates;
cosQ

ooy = (4l — 1)/Php_y(ishng) | Pyeog ()7 + sh? 7,dt;
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For1 (&) are Legendre polynomials.
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INDUCTION PERIOD DURING IGNITION OF A
PARTICULATE PHASE IN A HOT GAS

V. I. Lisitsyn and V, N, Vilyunov UDC 536.46

A particulate phase uniformly dispersed in a gas occupies a certain volume. All particles are of the
same size. At the surfaces of the particles there occurs a heterogeneous reaction between the excess ox-
idizer also contained in the gas and the substance of the particles. It is assumed that the particles are
sufficiently small that the entire process is limited by the chemical kinetics of the reaction only, If the
actual volume of the particles and the mean distance between them are much smaller than the gas volume
and the characteristic macroscopic dimension, respectively, then the gas—particles mixture can be sim-
ulated by a continuous medium [1].

The induction period for such a particulate phase is determined by the approximate method.

The basic premise in this method is that the rate of the chemical reaction depends very much on the
temperature and, consequently, the entire process of heating the particles up to ignition can be broken
down into two characteristic stages:

a) inertial heating of the particles from the initial temperature T, to the temperature Tq correspond-
ing to the point at which the temperature—time T (t) curve bends;

b) chemical heating of the particles at a temperature T(t) > Tg; this stage is either quasisteady (if
Tq < T; [2]; T; denotes the flash point of a single particle) or adiabatic (if Tq > Tj).

In the analytical solution, the two stages of heating are made to join at the bending point of the curve,
within an accuracy determined by the continuity of the first derivatives, as in [3].

The use of the method of successive approximations to produce the same results as the method of
joining solutions is considered. The solution which describes inertial heating of the particles by the gas
is taken as the zeroth approximation.

It follows from this solution that for Tq < Tj the principal contribution to the dimensionless induc~
tion period is the time of quasisteady chemical heating of the particles from Tq to Tj, whilst for Tq > Tj
it is the time of inertial heating from T to T (the time scale is based on the period of adiabatic induction
of particles at temperature Tg). If Tq = Tj, then the dimensionless induction period is minimum, A com-
parison with numerical solutions obtained on a computer indicates a satisfactory agreement with the adia~
batic and quasisteady approximation,
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CRITICAL CONDITIONS IN THE STEADY~STATE OF
THE IGNITION OF A PARTICULATE PHASE

V. I. Lisitsyn and V, N, Vilyunov UDC 536,46

A particulate phase uniformly distributed in a gas is simulated by a continuous medium with volume
gsources of heat (reacting particles). When the cluster of particles in the gas occupies a narrow gap of
finite width at an incandescent wall, then the critical conditions for its ignition are defined as those under
which no steady-state mode can be sustained in the gap [1].

The critical length L, as a function of the particle radius (at a constant mass concentration) has a
maximum, which is explained by the effect of two opposing trends: comminution increases the total sur-
face area of particles and lowers their temperature (reduces the heat generated per unit surface area).

The maximum Ley(r) corresponds approximately to rpy, = 0.89 T, where T denotes the radius at which
the ignition temperature of a single particle T; [2] is equal to the temperature Ty, of the incandescent wall.
(The ignition temperature of the cluster, as a function of the particle radius, has a maximum as a result
of the interaction of these factors [2].)

Combustion will occur at any gap dimension if r >, which, in physical terms, means that now the
particles near the incandescent wall ignite independently of the thermal processes taking place in the gas.

Raising the temperature Ty, results in combustion. If the gap dimension is smaller than the critical
gap dimension corresponding to the ignition temperature of a single particle of a given radius (L < L.(Tj);
moreover, combustion will occur as the temperature Ty, rises because conditions become unsteady in the
particles rather than in the system as a whole,

Increasing the pressure in the gas phase produces an increase in oxidizer concentration and, con-
sequently, a decrease in the critical gap dimension: Lep ~ p~% (@ > 1; p is the pressure in the gas phase).
Unlike the induction period, which is determined by the mass concentration [3], L, is determined by the
total surface of particles.

Indeed, the possibility of sustaining a steady-state mode depends on the ratio of incoming heat (de-
termined by the surface of particles and the hot wall temperature Tg,) to outgoing heat (determined by the
thermal~conduction characteristics of the gas and the cold wall temperature T), while the induction period
is related to the heat content.

The critical surfdce temperature (ensuring combustion) as a function of the particle radius, at a
constant gap dimension, has a maximum and a minimum value, The maximum arises because the state
of particles becomes unsteady earlier than the state of the system as a whole, while the minimum arises
because the conditions become critical with respect to complete combustion [2, 3].

From the critical condition obtained for combustion during intensive homogenization of a mixture

(small radii; particle and gas temperatures almost equal) there proceeds the result reported by Ya. B,
Zel'dovich in [1].
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A SUPERSONIC EJECTOR WITH A NOZZLE HAVING
A VERY THICK DISCHARGE RIM*

L. A. Gruzkov and V. A. Korobkov UDC 621.176

If the discharge rim of the central supersonic nozzle of an ejector has a considerable thickness, the
active jet induces in the initial section of the mixing chamber a complex flow consisting of the ejecting jet
and a circulating flow in the breakdown zone between the jets and the ground end, The sum of the ejector-
current impulse in the initial section of the mixing chamber and the static ground impulse is taken as the
value characterizing the inducing flow. I was established by experimental studies that the ratio of this
sum to the impulse of the active flow (the relative inducing impulse) is almost independent of the ejection
coefficient and the length of the mixing chamber in noncritical systems, The relative inducing impulse for
the given injector proved to be a function only of the Mach number of the active nozzle and the ratio of the
initial total pressures of the primary and secondary gases. An empirical expression is obtained for the
relative inducing impulse in noncritical systems of ejector operation.

INCIDENCE OF AN INDETERMINATE SUPERSONIC JET
ON A PLANET

V. I. Pogorelov UDC 533.601.15

When a supersonic indeterminate jet is incident on a plane mounted perpendicular to the nozzle axis,
there forms in front of it a receding shock wave, the form of development of which depends on the dis-
tance between the nozzle and the plane. The case of small distances was examined in [2]. If the distance
between the nozzle and the plane is such that the receding shock wave enters the region of rarefaction of the
free jet, where flow away from the source is realized [1, 3], then its curvature is reversed toward the
plane and it interacts with the standing discontinuity of the jet. Having written discharge equations for the
gas current up to the receding shock wave and beyond it, using a function for the shock wave and the as-
sumption that the density and velocity component parallel to the plane are constant beyond the receding
shock wave, it is possible to obtain a normal differential equation which allows the geometrical form of
the development of the receding shock wave to be determined.

The derivative of the shock wave equation in a triple configuration of shock waves, which is deter-
mined from its calculation, serves as the boundary condition for this equation. In addition, the value of
this derivative allows the coordinate of the triple shock wave configuration to be determined from an ordin-
ary algebraic function,

All the gas dynamic parameters in the subsonic region of flow beyond the shock wave are also de-
termined for a known form and position of the wave relative to the plane.

Calculations of the coordinates of the triple point according to the system presented, as well as the
geometrical form of the receding shock wave, were compared with the results obtained after analysis of
shadow photographs of the flow. Good agreement of the calculated and experimental data was established.

* Leningrad Institute of Aviation Instrument Engineering. Leningrad Mechanical Institute. Trans-
lated from Inzhenerno-Fizicheskii Zhurnal, Vol,21, No.5, p.941, November, 1971. Original article sub-
mitted March 24, 1970; abstract submitted March 25, 1971.

T Leningrad Mechanical Institute, Translated from Inzhenerno~Fizicheskii Zhurnal, Vol. 21, No.5,
pp. 941-942, November, 1971, Original article submitted June 24, 1970; abstract submitted February 22,
1971, :
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BREAK-AWAY DIAMETER FREQUENCY OF A BUBBLE
DURING BOILING UNDER CONDITIONS OF
FREE CONVECTION

A_A. Voloshko, A.V. Vurgaft, UDC 536.423 .1
and Yu.P. Fokin

An analytical solution for the break-away diameter of a vapor bubble, obtained in [1], taking into
account the inertial force of the liquid mass, referred to the movement of the growing bubble, has the
form
! (1)

d 5
2o =Cal8p ©))° .

Here Cjis a specific function of the dimensionless parameter
—  cypt e’ .,
K=V8 L2 Jal,

3 ol
lo®1°

The growth rate of the bubble is taken from [2]:

R (2)

At a bubble break-away frequency f = 07/71 a comparison of Egs. (1) and (2) gives

1

R S [_ﬂ_]z‘, (3)

2 _1__ ,[3
18,0 (M} * :

A comparison of the solutions (1) and (3) with experimental results showed that the solutions obtained
correctly reflect the nature of the functions under consideration and give satisfactory quantitative corre-
spondence with the experimental data at large values of the parameter K (for water Ja = 30),

It was found that the experimental results corresponding to small values of the criterion Ja deviate
from the solutions (1) and (3), and possible reasons for this deviation were indicated.
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BUBBLING IN A HOMOGENOUS WATER PULSED REACTOR *

A, N, Sizov and V. F. Kolesov UDC 621.039.57

In the article, a model of the formation of nuclei of the gaseous phase by means of fission fragments
is studied in application to a homogeneous water reactor. A fragment produces 0 electrons along its path.
As a result of the local generation of heat caused by the braking of the 6 electrons, a continuous vapor
trail is produced along the track of the fragment and then breaks up into finer individual bubbles.

Moreover, in its flight the fragment produces radiolysis of the water into hydrogen and oxygen along
the track. It is assumed that this "radiolytic” gas remains within the boundaries of the vapor trail and
then within the bubbles. A bubble formed in the liquid by a fission fragment has a temperature higher than
that of the surrounding liquid. Upon cooling, it contracts to the point where the pressure within it does not
satisfy the Laplace relation for a stable radius assuming equality of temperature in the bubble and in the
liquid. Here the pressure in the bubble is determined by the sum of the partial pressures of the radiolytic
gas and the water vapor,

The pressure dynamics of the bubble (its growth or contraction) is determined by the diffusion of gas
through its surface, which depends on the concentration of radiolytic gas in solution in the active zone at
the time of formation of the bubble.

A system of equations is developed to describe the process of radiolytic boiling in the active zone
of the reactor during a pulse, The concentration of radiolytic gas at the boundary of a bubble in the liquid
is determined from Henry's law for the solubility of gases, It is assumed that the concentration gradient
at the boundary of the bubble has the form

gradC = ‘/ B3 . LG s
©  VDr

where Cj and Cw are the concentrations of radiolytic gas in the liquid at the bubble boundary and far from
it, respectively; D is the diffusion coefficient; t is the time. '

The results of calculations for several given pulses are presented, It is found that the nature of the
boiling depends essentially on the initial pressure in the reactor and on the number of bubbles formed per
fragment (i.e., on the size of these bubbles). I is shown that the start of boiling at the bottom of the
reactor lags behind the start of boiling at the surface of the active zone.

MEASUREMENT OF SMALL MECHANICAL OSCILLATIONS
USING THE MOSSBAUER EFFECT

Ya. P. Boikova and N, P, Glazkov : UDC 53,082,79

A method of high energetic resolution, based on the Mossbauer effect, allows the detection of minute
energy variations with a precision of up to 1078 eV,

The possibility of applying the Mossbauer effect to measure mechanical oscillations of small ampli-
tude on the order of 107%-10~% ¢ in the ultrasonic frequency range of 20-100 kHz is examined in the article.

*Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 21, No, 5, p. 943, November, 1971. Orig-
inal article submitted October 29, 1969; abstract submitted May 5, 1971,
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It is shown that the transition can be made from low-frequency to high-frequency measurements of the am-
plitude and velocity of mechanical oscillations. It is also shown that averaging of the resonance absorp-
tion effect with respect to the velocity does not depend on the vibration frequency, but on the maximum
velocity of the mechanical oscillations. For this reason, amplitude vibrometers using this effect are
extremely simple in construction. Inthem Sni%0, (a gamma source) and SnO, (an absorber at room tem-
perature) can be used as the resonance couple, The determination of vibration velocities and amplitudes
reduces to comparative measurements of the impulse counting rate behind the absorber (in a transmission
geometry) and the counting rate without the absorber.

A calibration graph of the dependence of the resonance absorption effect on the maximum velocity
was calculated theoretically on the basis of the Breit—Wigner equation, According to the graph the total
measurement error averages ~10%.

The sensitivity (lower limit) and range of the velocity and amplitude measurements of vibrations
using a Mossbauer amplitude vibrometer depend on the instrumental absorption line width. In accordance
with this two subranges of the oscillation amplitude measurements are isolated: 10~4-1073 and 10-2-10-%u,

From the evaluation presented it is concluded that the sensitivity of a Mossbauer vibrometer is an
order of magnitude greater than that obtained with the interference method.

ON SATISFYING THE MOISTURE DISTRIBUTION FUNCTION
IN AN INORGANIC MEDIUM, ARISING FROM AN
ELEMENTARY PLANE SOURCE, BY THE NONLINEAR
DIFFERENTIAL EQUATION OF MOISTURE CONDUCTION

N, P, Zlobina and L. B, Tsimermanis UDC 621.317.39:533.275(088.8)

On the basis of a moisture distribution function in an inorganic medium from an instantaneous plane
source, which is an exact solution of a linear differential equation, an impulse method for determining the
coefficient of moisture diffusion is developed. It is shown in the article that the given function is an ap-
proximate solution of a nonlinear differential equation of moisture conduction under isothermal conditions
expressing the dependence of the diffusion coefficient on the moisture content,

The deviation of the linear differential equation from the nonlinear equation is evaluated on the basis
of experimental data obtained for 22 materials, The error with which the moisture diffusion coefficient is
determined by the impulse method neglecting its dependence on the moisture content is presented: it has
the average value 17%. Moreover, the given function permits the calculation of the exact coefficient of
moisture diffusion, taking into account its variation due to the moisture content.

The Ural Scientific-Research Institute of Building Design, Chelyabinsk, Translated from Inzhener-
no~-Fizicheskii Zhurnal, Vol.21, No.5, p.944, November, 1971, Original article submitted July 31, 1970;
abstract submitted March 31, 1971.
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A REFINEMENT OF THE INTEGRAL HEAT-BALANCE
EQUATION AND ITS APPLICATION TO

PROBLEMS CONSIDERED IN NONLINEAR
HEAT-CONDUCTION THEORY*

E. P. Kazakov UDC 536.2.01

We consider the one-dimensional nonlinear heat-conduction equation
0 _ 0 [, 0 (1)
CO 5~ o [A(e) ax ]
for an approximate solution of which we apply the integral relation

¢ 2 ac
P ;
L — {2 6ax—co
dFoj Chdx jaFo x
i} 0

dé 98

x=64d Fo ’ dx

ki
x-6 dx

(2

,
x=0

which is the thermal analogue of the dynamic Karman—Pohlhausen relation.

The main source of error in the given method is associated with the presence of the derivative of the
unknown function 6(x, Fo) in the second term on the right side of the integral relation (2). As the result
of two consecutive quadratures of the initial Eq. (1), this term may be written in terms of integrals of the
unknown function

) [\] x 6 |x=0 )
:——{H Cedx]dij‘{f*——ﬂdx]dx—l— j Adol- 3
x=0 § J
0 [¢] !xxé
Thanks to the integral form of representing the derivative of the unknown function 8(x, Fo), the
method is less sensitive to the choice of the function approximating the temperature distribution in the
thermal layer 6(Fo).

6Fo

The more precise method may be illustrated by solving the problem of the heating of a body with
variable thermophysical properties when it is subjected to boundary conditions of the first kind in the case
of nonstationary and quasistationary modes.

TEMPERATURE DISTRIBUTION IN A TWO-DIMENSIONAL
CONDUCTING LAYER WITH A VARIABLE CURRENT ¥

R.S. Kuznetskii UDC 621.365.3:621.3.025

The distribution of the steady temperature t and the current in the plate |zl = 1 which is heated by a
monochromatic current I exp (i®wT) may be determined from the equations and boundary conditions
1

a? 7
N —— | j |2 = = 0; i = 2in?j i’ = 1 ES
ve=—og it =00 =0 [ =2, j(0)=0, _51dz %’ (1)

*Tatar State Scientific-Research and Planning Institute of the Petroleum Industry, Bugul'ma.
Translated from Inzhenerno-Fizicheskii Zhurnal, Vol.21, No,5, pp.944~945, November, 1971, Original
article submitted March 24, 1970; abstract submitted March 1, 1971.

T Translated from Inzhenerno-Fizicheskii Zhurnal, Vol.21, No.5, pp.945-946, November, 1971.
Original article submitted March 11, 1970; abstract submitted March 24, 1971.
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where z is a coordinate referred to the plate semithickness a; A, 0, and [ are, respectively, its thermal
condnetivity, electrical conductivity, and magnetic permeability; n = a v 4ow/2; j is the complex amplitude
of the current density. From this we have

. 7 . och2(l+i)az
= (1 o ol n A
! 25( +an sh2(14+in @
or
X H_[__ [ e (Gnz) L . 3
/1= 2anl/ 2 -————Cz @ arg j = 2 — [arcig (cth n tg n) -+ arctg (th nz tg nz)]; (3)

(4)

‘e 12 [14 ¢y (2n2) ] T 2 [1 Sy (2n)

12

1640 ¢a (2n) 16ha | 2nc, (90) ] HO =T
(see Fig.1), where cy 3(x) = cothx * cosx, sy 5(x) = sinhx * sinx, At smallfrequencies (n < 1) we obtain a
small correction to the distribution ty = (16A0)~!1% (1 — z%) (t, = I>/24A0) for a constant current Iv2; at high
frequencies (n > 1), t-is almost constant everywhere except in the vicinity of surface layers of thickness of
order a/2n, where it falls sharply (in the limit as n =~ *, t = (1%/16\0) sign(1 — lzl)):

2 o 4ns

£, [1 e 22 (4 +z2)], f~1 <1 +—> (1 <0,5); £ 2 £{0) | 1— exp [—2n(1—2)},
45 315 5)

—_ 1\\
t > 1(0) (\1»—5;f’ (n> 3).

We note that t Ztg, 8t/6n = 0, 8t(0)/0n =0, (t/ty)' = 0, t/t4(1) = nsy(2n)/cy(2n) (which is close to 1
+ 4n%/45 and to n, respectively, for these same limiting cases),

Thus, along with an absolute electromagnetic skin effect, there is a relative temperature skin ef-
fect, i,e., the relative redistribution of the temperature in the use of the near-surface regions is at the
expense of the depth, This is natural since, with an increase in frequency, the principal sources of Joule
heat are all concentrated in a small neighborhood of the surfaces of the two-dimensional layer,

The redistribution of the temperature in the plate with an increase in n (in the frequency) is analogous
to the evolution of the relative profile of the local mean velocity of the liguid in a two-dimensional channel
with an increase in the Reynolds number (in the outflow rate). This analogy is universal for' all forms
of conductor cross sections and, correspondingly, of the channel cross sections for a liquid.
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NONSTATIONARY HEAT CONDUCTION IN BODIES
WITH A UNIFORMLY MOVING HEAT-EMITTING LAYER

G. G. Golov UDC 536.21

In this paper we consider an unbounded or a semibounded body with an initial temperature T, The
thermal characteristics of the body material,i.e,, the coefficients of thermal conductivity (A) and thermal
diffusivity (e}), are assumed to be constant,

From the instant of time 7. = 0 a two-dimensional heat-emitting layer of thickness a and with source
density (A + BTg)A/ af moves along the body; A and B are constants of arbitrary sign, the first of which
may be zero.

The rate of displacement u of the layer is constant with time,

For the semibounded body, conditions of thermal insulation or of constant temperature are imposed
on the moving bounding surface, which is at the same time a boundary of the heat-emitting layer,

The heat-conduction equations for an unbounded body in a moving system of coordinates have the
form

My _ 20T 0Ty
e T
My _ L 0Ty 0T,
gt ! oo + A

o =9 a§2-1-u % (t>0, E<—a) ‘
TiE Dheo=0 >0 T2 Djg=0 (—a<i<0 TE 0 fo=0 ¢ <—a)
T (&, 1) (§=m =0, T3¢ 7 [gz-w =0, T, & 1) [ggo =Ty (E 7) Je=00 Ty, 1) ]§= — =

M 9 0Tz (£, ©) T (£, D 9Ty (&, 7)
=T2 @ V=g 10% =0 23& f):;:o' : - — 355 =—a,(1:>0).

(>0, £ 0);

+A+BT;, (1>0, —a<f<0)

The temperature of the semibounded body may be described by the equations
0Ty O

7w e T

Ay _ 0Ty s

T,
o = g a; L A+BT, €>0 —a<E<O)

(T>0 E=0);

T Do =0 E>0 T2 N)0p=0 (—a< E<0); T T jgme =0 1
ffi%é——’—)g__a =0 or Ty T lgm s =T5—To
T, (£, v AT, (E, ©)
Tl (g, T} f§=0 = Tz (E, T) k:(), la§ %§=0 = 2 ag §=0(T = 0),

where Tg is the temperature of the body on the bounding surface,
After making the substitutions
Ty W =Ty @& Dexp (B—wda) 1], Ta® )= T3 v)exp[(B —u4a}) 7],
T3 ) =T5E 1) exp [(B — u2/4a) 7]

we can solve the heat-conduction equations by an operational method.

The inverse Laplace transform may be reduced to a contour integral (see Fig.l), which may be
evaluated with the help of Jordan's lemma and Cauchy's residue theorem. The temperature transforms
have simple poles at § = u?/4a} — B. When B >0 a finite number of poles of the first order also appears
on the interval (- B, 0) at the points -Xy). Inthe unbounded body problem these points may be determined

from equation . o
ctg (aa7 !V Xp) = — (B — 2Xn)2 VX0 V' B —Xa,

Translated from Inzhenerno~-Fizicheskii Zhurnal, Vol,21, No.5, pp.946-948, November, 1971.
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5 X

Fig.1l, Contour of integration in the
plane of the complex variable S for
B > 0: S =—B is a branch point; - X,

and S; =u?/4a} are first order poles,

-

and, in problems for a body with the boundary conditions (1), from the equation

_ — [ u e\ !
ctg (aarI VXp) = — (VB _X_n—le;—*—Xn) [Vxn (‘QZ +¥VB—X, ﬂ
ar
- X,
tg (aarl VXH) = V'gm .

If, for all X, (corresponding to the problem), the inequality (B — X, — (u¥/4a}) <0 is satisfied, then:
dy distribution as T increases. The values of the tem-

the temperature of the body tends towards a stea

perature IT (&, T)i increase in time without bound when even for one X, this condition is not satisfied.

When B = 0 a steady distribution necessarily exists.

The solution of the heat conduction equations for the unbounded body simplify greatly if B = 0:

uye

T
A a4-§
re o= g | [e” ( 2a) 6
0

z uy'®
2ey )~erf( 2‘11}/5 + 2a, )]de’

= ”Ve_)_erf( ; £ ”Ve—ﬂde,

N Ve + 2a,

T
A a-+
Ty, T) = ?bgv[erf(%l]/e
T _ A f(—2E5
&M= .0”“ ( 20, V0

+ u;a/qe_)—erf< 261121/9‘ + uglile_)j, 40.

({In fact, these equations can be used for the approximate calculation of the temperature of the body for

small Tand B # 0),

In the paper the results of an illustrative calculation of the temperature for an unbounded body is

presented.

1467



APPROXIMATE DETERMINATION OF THERMOELASTIC
STRESSES IN A SPHERE DURING SYMMETRICAL HEATING

V. M. Guba, Yu. S, Postol'nik, UDC 539.377
and V. A. Garanchuk

An approximate method of determining the thermoelastic stresses in a hollow sphere Ry =r = R,)
heated symmetrically from the outside is examined, The process of nonsteady-state heat conduction is in-
terpreted by an engineering model. During the inertial stage, while the preheating is taking place, the
cross section of the sphere is divided into two zones: a preheated zone (Ry + b{t) = r =R,) with an excess
temperature Ty{r, t) and an unpreheated zone Ry =r =Ry + b(t)) with zero excess temperature, Here b{t)
is the thickness of the unpreheated zone, The general solution of the thermoelastic problem in the inertial
stage has the following form:

. ;
U;D):EQL_E__ . JL_ S Tyridr;

l—p RE—RY s

RyH-b(t)
RZ
s 2
080)= ek . 2r__~__\+ R% Tyridr;
1 — 1 RS 4—R3) ”
Re=RDT o o
3 R, r
aE 1| P—
ot e - L—rg—kl X Tyridr — T, r2dr ] ;
L—p 1 RS — R‘; .
Ry+-b(t) ) Rs-+b(t)
5 R, r
1 [ 2 )
o SE L1 2°+R Tyrdr + Tortdr — TP |,
® 3 3 1 1 1
l—p 72| RE—R
Ry+b(8) Ry-+b(¢)

where 09 and o) are the stresses in the unpreheated and preheated zones, respectively; @ is the linear
expansion coefficient; E is the elastic modulus; # is the Poisson coefficient,

During the regular heating stage, when the temperature varies through the entire cross section of
the body, the thermoelastic stresses are determined by well-known expressions which can be obtained
from the equations for 0(1), setting b(t) = 0 and substituting the temperature function corresponding to this
stage, As an example a calculation is presented of the stresses in a solid sphere with a uniform initial
temperature, heated at a constant surface temperature, Approximate temperature functions are obtained
by the method of averaging functional corrections. It is shown that in the inertial stage, in the unpreheated
zone, the radial and circumferential stresses are positive, equal in value, and constant in coordinate. The
maximum tension stresses arise in the center of the sphere at the moment the inertial stage ends, corre-
sponding to the greatest temperature drop across the cross section for the given boundary conditions of
heating. Inthe regular stage, when temperature equalization takes place, the stresses decrease. Graphs
are presented illustrating the solution obtained, The results of the calculation are compared with the
exact solution,

M.I. Arsenichev Dneprodzerzhinsk Industrial Institute. Translated from Inzhenerno-Fizicheskii
Zhurnal, Vol,21, No.5, pp.948~949, November, 1971. Original article submitted February 5, 1970;
abstract submitted April 7, 1971,

1468



HEAT CONDUCTION IN SOLID OR HOLLOW
CYLINDERS WITH HEAT-EXCHANGE
COEFFICIENTS DEPENDING ON THE ANGLE

M. K. Kleiner UDC 536.212

In [1, 2] the heat-conduction problem for massive solid cylinders,

9% (p. 9, Fo) R}

SRo VO @ Fo) + RELFO) 1. g Fo)+ —"Qp, o, Fo) (1)
= (m,a:, £ _ 181y () +Bi1 (0, , Fo) = — Biy () s (0, Fo)—BT—i?T@t(m’ 8 Fo)sin e—2§D 4. @
9
—95“'%'“’%52(@ [t (9. Fo)—£ (1, @, Fo)l =0 )
and for thin-wall hollow cylinders, P
ot (;P,F:‘O) _ o (;’q;zFo) — M (¢, Fo)¢ (g, Fo) 4 Q (g, Fo)—lui_ig:iJ [t(q;, Fo) — 71— ;,S‘ £{g. Fo) sin 9_2@ de], {(4)

supplemented by the initial conditions, the conditions of temperature periodicity and of continuity of the
heat flow with respect to the angle condition, were solved under the assumptions Biy = const (k =1, 2) and
M(¢, Fo) = M(Fo). The analogous problem for a solid cylinder is formulated in the form (1}, (3) replac~
ing {2) by the condition of the finiteness of t{0, ¢, Fo) [3]. In Egs.(1)-{4) @ =R1,R2 arethe inner and:
outer cylinder radii. The other notation is conventional,

If the heat-exchange coefficients are dependent on the angle (then Biy and M also depend on ¢} it is
very difficult to find the kernels of the integral transformations, The solution of the problem (1)-(3) and
(4) was therefore obtained by means of perturbation theory. In the case of constant Biy and M(¢, Fo)
= M(Fo) the problem remains unperturbed, If

Bij, (¢) = Bigg [Cx -+ B Bix, ()], (5)
M (g, Fo) = My (Fo) [C + BM, (@, Fo)l, (6)
max [ Big; (9) | < Cr, max|M;(p, Fo) < C, f<1, (7

the solution is sought in the form of a power series

t{o, p, Fo) = E B & (o, 9, Fo). (8
=0
It has been shown that the first two conditions of (7) can always be satisfied, The substitution of (8) into
the original equations results in recurrence relations for ty(p, ¢, Fo) (for thin-walled pipes the sought
function is independent of p), each being similar to the unperturbed problem, With (7) satisfied the the
convergence of (8) is proved in the case of solid or hollow (massive or thin~walled) cylinders.

A numerical example has shown that for 8 = 0.2 it suffices that the first three terms of the series
(8) be retained. The solutions thus obtained enable one to show the principal differences between two
heating modes, in each of which either the temperature of the medium or the heat-exchange coefficient are
angle~dependent.

In the paper the roots of the equation

I (b, n) - P, n
Imiq (P«m,n) m—+ Bi

All-Union Scientific-Research Tube Institute, Translated from Inzhenerno-Fizicheskii Zhurnal,
Vol. 21, No.5, pp.949-950, November, 1971. Original article submitted August 6, 1970; abstract sub-
mitted April 12, 1971,
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werem, n=1, 2,..., 6. and 0 = Bi = 100; furthermore, proposals were made for a new index charac-
terizing the lack of symmetry of the heat flow and the functions M(¢, Fo) and Q(¢, Fo) were obtained,
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.

TWO REPRESENTATIONS OF THE TEMPERATURE
FIELD FOR GIVEN POWER FUNCTIONS
OF TIME

M. I, Dubovis UDC 536.21

Cases are considered in which the boundary conditions and strength of heat sources are specified as
power functions of time with exponents equal to 0, 0.5, 1, and 1,5, Special solutions are obtained for an
infinite plate and a spherical shell using the Laplace transform of the fundamental solution consisting of
thermal potentials, These solutions are then expressed in terms of integrals of the probability integral,
It is shown that, by integration operations applied to the general representation given in a form which is
more convenient for long intervals of time, special solutions can be obtained. These special solutions are
expressed in terms of exponential trigonometric series and Bernoulli or Euler polynomials. The re~
mainder of the series is estimated,
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